
Analytical solutions to the moving boundary problems with space–time-fractional derivatives in

drug release devices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 12131

(http://iopscience.iop.org/1751-8121/40/40/008)

Download details:

IP Address: 171.66.16.146

The article was downloaded on 03/06/2010 at 06:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/40
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) 12131–12141 doi:10.1088/1751-8113/40/40/008

Analytical solutions to the moving boundary problems
with space–time-fractional derivatives in drug release
devices

Xicheng Li1, Mingyu Xu1 and Shaowei Wang2

1 Institute of Applied Mathematics, School of Mathematics and System Science,
Shandong University, Jinan 250100, People’s Republic of China
2 Department of Mechanics and Aerospace Engineering, College of Engineering,
Peking University, Beijing 100871, People’s Republic of China

E-mail: xichengli@yahoo.com.cn

Received 22 June 2007, in final form 27 August 2007
Published 18 September 2007
Online at stacks.iop.org/JPhysA/40/12131

Abstract
A mathematical model of a solute release from a planar polymer matrix is
presented and the analytical solution in terms of the Fox H function is given.
The equation of space–time-fractional diffusion and a generalized Fick’s law
are used in the paper. Three particular cases, the standard diffusion, the time-
fractional and the space-fractional diffusions are discussed in detail. The model
and the solution are the generalization of the previous works and include them
as special cases.

PACS numbers: 02.30.Jr, 02.60.Lj, 02.50.−r

1. Introduction

It is well known that diffusion models play a very important role in biology, chemistry, and
physics. The diffusion process is normally governed by Fick’s first and second laws which
lead to the ordinary diffusion equation in one dimension

∂C(x, t)

∂t
= K

∂2

∂x2
C(x, t), (1)

which has been extensively studied.
It has recently been shown that the solute movement in the heterogeneity media is usually

anomalous and cannot be described by the standard diffusion equation. In the past two
decades, anomalous diffusion has been widely researched by using the so-called fractional
calculus [16, 17]. The fractional (space or time or space–time) diffusion equation is obtained
from the standard diffusion equation by replacing the second-order space derivative with a
Riesz or Riesz–Feller derivative of order α ∈ (0, 2], and the first-order time derivative with the
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Figure 1. Profile of concentration.

Riemann–Liouville or the Caputo derivative of order β ∈ (0, 1] (see [1–3] and the references
therein). Different cases of Cauchy problems in a fixed domain have been considered, for
example, the absorbing and reflecting boundaries in half-space and in a box [4], diffusion
equation together with appropriate initial conditions [5].

Due to the high nonlinearity of moving boundary problems and the fact that many of the
useful properties of ordinary derivative are not known to carry over analogously for the case
of fractional derivative operator, such as a clear geometric or physical meaning, product rules,
chain rules and so on, fractional calculus has scarcely been applied to such problems. Liu
and Xu [6] were the first and only ones who introduced the time-fractional diffusion equation
to the drug release process which is a moving boundary problem from the point of view of
mathematics. They proved the well-known semi-empirical formula in the controlled drug
release system given by Ritger and Peppas.

In this paper, we use the space–time-fractional diffusion equation to master the process
of a solute release from a polymer matrix in which the initial solute loading is higher than the
solubility. The mathematics model is proposed and the analytical solution is obtained. For
convenience of practical use, we give the computable form of the solution in some particular
cases. A diagram describing the diffusion front of the device is also given.

2. Mathematical model

A solute release from an undissolved monolithic polymeric matrix is considered and a condition
of perfect sink is assumed.

The concentration profile at time t is shown in figure 1. Where R is the scale of the
polymer matrix. Each matrix consists of two regions: the surface zone, 0 < x < s(t), in
which all solute is dissolved, and the core, s(t) < x < R, which contains undissolved solute.
The two zones are separated by the diffusion front, x = s(t), which moves inward as time
progresses. C0 and Cs are the initial concentration of the solute distributed in the matrix and
the solubility of the solute in the solvent, respectively. We will consider only the early stage
of loss before the diffusion front moves to R and assume that C0 > Cs .

We apply the space–time-fractional anomalous diffusion equation
c
0D

β
t C(x, t) = D∇α

x C(x, t) (0 < β � 1 < α � 2) (2)
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to the region 0 < x < s(t), and use the following boundary conditions:

x = 0, C = 0 (3)

x = s(t), C = Cs. (4)

and

(C0 − Cs)
ds(t)

dt
= −Fl(x, t)|x=s(t), (5)

where c
0D

β
t is the Caputo derivative defined by

c
0D

β
t f (t) = 1

�(m − β)

∫ t

0

f (m)(τ ) dτ

(t − τ)β+1−m
, m − 1 < β < m, (6)

where �(·) is the gamma function. ∇α
x is the Riesz derivative operator. By denoting the

Fourier transform of a sufficiently well-behaved function f (x), f̂ (k) = F {f (x); k} =∫ ∞
−∞ eikxf (x) dx, k ∈ R, the Riesz derivative of order α is defined by

F
{∇α

x f (x); k
} = −|k|αf̂ (k). (7)

D is the generalized diffusivity. Equation (3) is the perfect sink condition at the surface of
matrix. Equation (5) is a condition for x = s(t) which can be obtained using the conservation
law of mass and Fl(x, t) is the flux of diffusion. In the standard diffusion case,

Fl(x, t) = −K
∂

∂x
C(x, t), (8)

which is the Fick’s first law. Due to the non-local property of anomalous diffusion, following
Chaves [7], Zannette [8] and Paradisi et al [9], we use the generalized non-local Fick’s
law,

Fl(x, t) = c
0D

1−β
t F−1

{
|k|α−2F

{
−D

∂

∂x
C(x, t)

}}
, (9)

to replace (8), where F−1 denotes the inverse Fourier transform.
The properties of the Caputo derivative can be found in [16, 17]. An important property

used in the paper is

c
0D

a
t t

b = �(1 + b)

�(1 + b − a)
tb−a (0 � m � a < m + 1, b > m,m ∈ N). (10)

The constraint of this relation can be removed if we consider the analytical continuation of the
gamma and beta functions for the entire complex plane (see [16], sections 1.1.3 and 1.1.4.).

3. The solution to the governing equation

By using reduced dimensionless variables defined as

ξ = x

R
, τ =

(
D

Rα

) 1
β

t, θ = C

Cs

, S(τ) = s

R
, (11)

and the two relations (A.1)–(A.2) presented in the appendix, the governing equation (2)
subjected to conditions (3)–(5) can be reduced to the respective dimensionless forms

c
0D

β
τ θ(ξ, τ ) = ∇α

ξ θ(ξ, τ ) (0 < ξ < S(τ), τ > 0), (12)

θ(ξ, τ ) = 0 (ξ = 0), (13)
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θ(ξ, τ ) = 1 (ξ = S(τ)), (14)

η
dS(τ)

dτ
= −F(ξ, τ )|ξ=S(τ), (15)

S(0) = 0, (16)

where η = C0−Cs

Cs
and F(ξ, τ ) = c

0D
1−β
τ F−1

{|k|α−2F
{− ∂

∂ξ
θ
}}

is the non-dimensional flux.
Since we consider only the early stage of loss before the diffusion front moves to R,

the semi-infinite assumption can be used. As a result, we first consider equation (12) in the
semi-infinite space which satisfies

θ(0, τ ) = 0 (17)

and

θ(ξ, 0) = q = const. (18)

As for the time-fractional diffusion, the above problem has been discussed by Schneider and
Wyss [5] in detail. They gave the solution as

θ = q

∫ ∞

0
dy{G(|ξ − y|, τ ) − G(|ξ + y|, τ )}, (19)

in which G(ξ, τ ) is the Green’s function (or fundamental solution). It can also be written as

θ(ξ, τ ) = q

∫ ξ

0
dy G(ξ − y, τ ) + q

∫ ∞

ξ

dy G(y − ξ, τ ) − q

∫ ∞

0
dy G(ξ + y, τ ). (20)

Substituting z for ξ − y, y − ξ, ξ + y, respectively, we obtain

θ(ξ, τ ) = 2q

∫ ξ

0
G(z, τ) dz. (21)

For the space–time-fractional diffusion we considered, the solution has the same form as
(21) except a difference of the Green’s function. In Mainardi et al’s papers [10, 11], the
Green’s function for the Cauchy problem of space–time-fractional diffusion equation in terms
of the Fox H function was given. The space-fractional derivative operator they used is the
Riesz–Feller derivative. In this paper, we use the Riesz operator which is a special case of
the Riesz–Feller operator as the space-fractional derivative operator. By using Gα,β(ξ, τ ) to
denote the Green’s function of our problem, we list the result we need in this paper here:

Gα,β(ξ, τ ) = 1

αξ

1

2π i

∫ r+i∞

r−i∞

�
(

s
α

)
�

(
1 − s

α

)
�(1 − s)

�
(

s
2

)
�

(
1 − s

2

)
�

(
1 − βs

α

) (
ξ

τ γ

)s

ds

= 1

αξ
H

2,1
3,3

[
|ξ |
τ γ

∣∣∣∣(1, 1
α
)(1,

β

α
)(1, 1

2 )

(1, 1
α
)(1,1)(1, 1

2 )

]
, (22)

where γ = β

α
and 0 < r < 1. The Fourier transform of Gα,β(ξ, τ ) is

Ĝα,β(k, τ ) = Eβ(−|k|ατβ), (23)

where Eβ(·) is the Mittag–Leffler function defined as

Eβ(z) =
∞∑

n=0

zn

�(βn + 1)
, β > 0, Z ∈ C. (24)
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From equation (21), the solution to the original problem (12)–(15) can be written as

θ(ξ, τ ) = 2q

∫ ξ

0

1

αξ ′ H
2,1
3,3

[
|ξ ′|
τ γ

∣∣∣∣(1, 1
α
)(1,

β

α
)(1, 1

2 )

(1, 1
α
)(1,1)(1, 1

2 )

]
dξ ′

= 2q

∫ ξ/τ γ

0

1

αz
H

2,1
3,3

[
z

∣∣∣∣(1, 1
α
)(1,

β

α
)(1, 1

2 )

(1, 1
α
)(1,1)(1, 1

2 )

]
dz

= 2q

α

∫ ξ/τ γ

0

1

2π i

∫ r+i∞

r−i∞

�
(

s
α

)
�

(
1 − s

α

)
�(1 − s)

�
(

s
2

)
�

(
1 − s

2

)
�

(
1 − βs

α

)zs−1 ds dz.

Noting that 0 < r < 1, zs−1 is an integrable function in
[
0,

ξ

τ γ

]
, the order of integral can be

exchanged. Consequently, we have

θ(ξ, τ ) = 2q

α

1

2π i

∫ r+i∞

r−i∞

�
(

s
α

)
�

(
1 − s

α

)
�(1 − s)�(s)

�
(

s
2

)
�

(
1 − s

2

)
�

(
1 − βs

α

)
�(1 + s)

(
ξ

τ γ

)s

ds.

Since the contour separates the poles of �
(
1− s

α

)
, �(1− s) and �

(
s
α

)
, �(s), the integral above

can be represented in terms of the Fox H function,

θ(ξ, τ ) = 2q

α
H

2,2
4,4

[
ξ

τ γ

∣∣∣∣(1, 1
α
)(1,1)(1,

β

α
)(1, 1

2 )

(1, 1
α
)(1,1)(0,1)(1, 1

2 )

]
, (25)

where q is a constant to be determined. Noting that the boundary condition (14) has to be
satisfied for all the values of τ, S(τ ) must be proportional to τ γ ,

S(τ) = pτγ , (26)

where p is a constant to be determined.
Substituting (26) into (25), the first relationship between p and q can be obtained:

2q

α
H

2,2
4,4

[
p

∣∣∣∣(1, 1
α
)(1,1)(1,

β

α
)(1, 1

2 )

(1, 1
α
)(1,1)(0,1)(1, 1

2 )

]
= 1. (27)

In order to get another relationship between p and q, we must consider the flux. Using (21)
and (23), we arrive at

F

{
−∂θ

∂ξ

}
= −2qF {Gα,β(ξ, τ )} = −2qEβ(−|k|ατβ). (28)

As a result,

F(ξ, τ ) = −2q c
0D

1−β
τ F−1{Eβ(−|k|ατβ)|k|α−2}. (29)

Considering the properties of Mellin transform and

M {Eβ(−z); s} = �(s)�(1 − s)

�(1 − βs)
, (30)

we have

M {Eβ(−|k|ατβ)|k|α−2; s} = 1

α
τ

2β−βs

α
−β

�
(

α−2
α

+ s
α

)
�

(
1 + 2−α

α
− s

α

)
�

(
1 + 2−α

α
β − βs

α

) . (31)

Using the relationship between Fourier transform and Mellin transform [10],

Ic(x) = 1

π

∫ ∞

0
f (k) cos(kx) dk,

Ic(x) = 1

πx

1

2π i

∫ r+i∞

r−i∞
f ∗(s)�(1 − s) sin

(
πx

2

)
xs ds, x > 0, 0 < r < 1,
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where Ic(x) is the inverse Fourier Cosine transform of f (k) and f ∗(s) is the Mellin transform
of f (k), we can get the flux

F(ξ, τ ) = c
0D

1−β
τ

−2q

πξ

1

2π i

∫ r+i∞

r−i∞
M {Eβ(−|k|ατβ)|k|α−2; s}�(1 − s) sin

(
πs

2

)
ξ s ds

= −2qτ
2β

α
−1

αξ

1

2π i

∫ r+i∞

r−i∞
H(s)

(
ξ

τ γ

)s

ds, (32)

where

H(s) = �
(

α−2
α

+ s
α

)
�

(
2
α

− s
α

)
�(1 − s)

�
( 2β

α
− β

α
s
)
�

(
1 − s

2

)
�

(
s
2

) . (33)

In the course of deriving (33), the complementary law of the gamma function

�(x)�(1 − x) = π

sin(πx)
(34)

and the formula of the Caputo derivative (10) are used. The flux can be expressed in terms of
the H function:

F(ξ, τ ) = −2qτ 2γ−1

αξ
H

2,1
3,3

[
ξ

τ γ

∣∣∣∣( 2
α
, 1

α
)(

2β

α
,

β

α
)(1, 1

2 )

( 2
α
, 1

α
)(1,1)(1, 1

2 )

]
. (35)

Therefore, from equations (15) and (26) the second equation of p, q is

ηpγ = 2q

αp
H

2,1
3,3

[
p

∣∣∣∣( 2
α
, 1

α
)(

2β

α
,

β

α
)(1, 1

2 )

( 2
α
, 1

α
)(1,1)(1, 1

2 )

]
. (36)

Eliminating q in (27) and (36), we can obtain the equation of p:

ηp2γH
2,2
4,4

[
p

∣∣∣∣(1, 1
α
)(1,1)(1,

β

α
)(1, 1

2 )

(1, 1
α
)(1,1)(0,1)(1, 1

2 )

]
= H

2,1
3,3

[
p

∣∣∣∣( 2
α
, 1

α
)(

2β

α
,

β

α
)(1, 1

2 )

( 2
α
, 1

α
)(1,1)(1, 1

2 )

]
. (37)

In order to get the value of p, we must solve equation (37). However, computing routine
for the H function is not available. Fortunately, in some special cases, the H function can be
represented by convergent series which can be calculated.

4. Discussion on the solution

The standard diffusion equation, time-fractional and space-fractional diffusion equations are
the three special cases which have been widely discussed. In this section, we consider our
problem in these three cases.

Case 1. When β = 1, α = 2 the governing equation (12) degenerates into the standard
diffusion equation (1) and the generalized Fick’s law (9) degenerates into the Fick’s first law
(8). In this case, the solution (25) becomes

θ(ξ, τ ) = qH
2,2
4,4

[
ξ

τ 1/2

∣∣∣∣(1, 1
2 )(1,1)(1, 1

2 )(1, 1
2 )

(1, 1
2 )(1,1)(0,1)(1, 1

2 )

]
= qH

1,1
2,2

[
ξ

τ 1/2

∣∣∣∣(1,1)(1, 1
2 )

(1,1)(0,1)

]

= q

∞∑
k=0

(−1)k
(

ξ

τ 1/2

)k+1

�
(

1
2 − k

2

)
(k + 1)!

= q

∞∑
m=0

(−1)2m
(

ξ

τ 1/2

)2m+1

�
(

1
2 − m

)
(2m + 1)!

= q
2√
π

∞∑
m=0

(−1)m
(

ξ

2τ 1/2

)2m+1

m!(2m + 1)
= q erf

(
ξ

2τ 1/2

)
, (38)
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where erf(·) is the Error function. In the course of deriving (38), the expansion for the H
function [18],

Hm,n
p,q (z) =

m∑
h=1

∞∑
k=0

∏m
j=1,j �=h �

(
bj − Bj

bh+k

Bh

) ∏n
j=1 �

(
1 − aj + Aj

bh+k

Bh

)∏q

j=m+1 �
(
1 − bj + Bj

bh+k

Bh

) ∏p

j=n+1 �
(
aj − Aj

bh+k

Bh

) (−1)kz(bh+k)/Bh

k!Bh

,

was used. Similarly, the non-dimensional flux becomes

F(ξ, τ ) = −q

ξ
H

2,1
3,3

[
ξ

τ
1
2

∣∣∣∣(1, 1
2 )(1, 1

2 )(1, 1
2 )

(1, 1
2 )(1,1)(1, 1

2 )

]

= −q

ξ
H

1,0
1,1

[
ξ

τ
1
2

∣∣∣∣(1, 1
2 )

(1,1)

]

= − q√
π

exp

(
− ξ 2

4τ

)
τ− 1

2 . (39)

Therefore, the equation of p is

√
π

p

2
erf

(
p

2

)
exp

(
p2

4

)
= Cs

C0 − Cs

(40)

It is exactly the solution given by Paul and McSpadden [12].

Case 2. When 0 < β � 1, α = 2, (12) degenerates into the time-fractional diffusion equation.
In this case,

θ(ξ, τ ) = qH
2,2
4,4

[
ξ

τβ/2

∣∣∣∣(1, 1
2 )(1,1)(1,

β

2 )(1, 1
2 )

(1, 1
2 )(1,1)(0,1)(1, 1

2 )

]

= qH
1,1
2,2

[
ξ

τβ/2

∣∣∣∣(1,1)(1,
β

2 )

(1,1)(0,1)

]

= q

∞∑
n=0

(−1)n

�
(
1 − β

2 (1 + n)
) (

ξ

τβ/2

)n+1

(n + 1)!
, (41)

F(ξ, τ ) = −qτβ−1

ξ
H

2,1
3,3

[
ξ

τβ/2

∣∣∣∣(1, 1
2 )(β,

β

2 )(1, 1
2 )

(1, 1
2 )(1,1)(1, 1

2 )

]

= −qτβ−1

ξ
H

1,0
1,1

[
ξ

τβ/2

∣∣∣∣(β,
β

2 )

(1,1)

]

= −qτβ−1

ξ

∞∑
n=0

(−1)n
(

ξ

τβ/2

)n+1

�
(
β − β

2 (1 + n)
)
n!

. (42)

The equation of p becomes

∞∑
n=0

(−1)npn+1

�
(
β − β

2 (1 + n)
)
n!

= ηp2 β

2

∞∑
n=0

(−1)n

�
(
1 − β

2 (1 + n)
) pn+1

(n + 1)!
. (43)



12138 X Li et al

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

S
(τ

)
(A)

C
0
/C

s
=2.5

1 2 3

4

5

6

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

S
(τ

)

C
0
/C

s
=4

1 2 3 4 5 6

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

S
(τ

)

C
0
/C

s
=6

1 2 3 4 5 6

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

S
(τ

)

C
0
/C

s
=7.5

1 2 3 4 5 6

(B)

(C) (D)

Figure 2. Non-dimensional diffusion front position S(τ) versus non-dimensional time at various
solute loading levels. Curves 1–6 correspond to the cases that (α, β) equals to (1.25,1), (1.5,1),
(1.75,1), (2,1), (2,0.75) and (2,0.5), respectively.

If applying the operator c
0D

β−1
τ to both sides of (15) and using the properties of the Caputo

derivative we can find that our solution is exactly the solution given by Liu and Xu [6].

Case 3. When 1 < α � 2, β = 1, (12) becomes the space-fractional diffusion equation. In
this case,

θ(ξ, τ ) = 2q

α
H

2,2
4,4

[
ξ

τ 1/α

∣∣∣∣(1, 1
α
)(1,1)(1, 1

α
)(1, 1

2 )

(1, 1
α
)(1,1)(0,1)(1, 1

2 )

]

= 2q

α
H

1,2
3,3

[
ξ

τ 1/α

∣∣∣∣(1, 1
α
)(1,1)(1, 1

2 )

(1,1)(0,1)(1, 1
2 )

]

= 2q

απ

∞∑
n=1

( −ξ

τ 1/α

)n �
(

n
α

)
n!

sin

(
−n

2
π

)
, (44)

F(ξ, τ ) = −2qτ
2
α
−1

αξ
H

2,1
3,3

[
ξ

τ 1/α

∣∣∣∣( 2
α
, 1

α
)( 2

α
, 1

α
)(1, 1

2 )

( 2
α
, 1

α
)(1,1)(1, 1

2 )

]
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= −2qτ
2
α
−1

αξ
H

1,1
2,2

[
ξ

τ 1/α

∣∣∣∣( 2
α
, 1

α
)(1, 1

2 )

(1,1)(1, 1
2 )

]

= −2qτ 1/α

παξ

∞∑
n=1

( −ξ

τ 1/α

)n �
(
1 − 2

α
+ n

α

)
(n − 1)!

sin

(
−n

2
π

)
. (45)

The equation of p becomes

η
1

α
p2

∞∑
n=1

(−p)n
�

(
n
α

)
n!

sin

(
−n

2
π

)
=

∞∑
n=1

(−p)n
�

(
1 − 2

α
+ n

α

)
(n − 1)!

sin

(
−n

2
π

)
. (46)

The non-dimensional diffusion front position S(τ) versus non-dimensional time τ at
various solute loading levels is shown in figure 2. Curves 1–3 correspond to space-fractional
diffusion models, curve 4 corresponds to the ordinary diffusion model, curves 5 and 6
correspond to time-fractional diffusion models. It is obvious that the time-fractional diffusion
model and the space-fractional one describe sub-diffusion and super-diffusion, respectively.
It is consistent with the conclusion of [1, 2]. As for the same curve, by comparing the four
pictures in figure 2, we can see that the higher the initial solute loading level is, the longer the
time to reach R for the diffusion front s(t) needs. These conclusions show the fact that the
models are well consistent with the truth.

5. Summary and conclusion

For the moving boundary problems, very few analytical solutions are available in closed form
[19]. They are mainly for the one-dimensional cases of an infinite or semi-infinite region and
are known as the similarity solution in the standard diffusion cases.

The scale invariant (or similarity solution) of the fractional diffusion equation has been
considered in some cases [13–15]. The model in this paper is just a special case which has
the similarity solution taking the form of the function of the single variable ξ

τβ/α . In the cases
when the matrix is cylindrical or spherical, the semi-infinite assumption cannot be used. The
similarity solution may not exist because of the existence of the characteristic scale. Therefore,
other skills must considered in these cases.

In researches on the controlled release drug delivery systems for which the release rate over
time is pre-programmed into the device, the relevant mathematical models of drug releases
from the polymer matrix are the most powerful tools. Therefore, the study of fractional
calculus in moving boundary problems would be of great interest to both theoreticians and
experimenters in the future.
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Appendix

In this section, we present some properties of the Caputo fractional derivative to show the
derivation of the dimensionless form of (2) and (5).
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If t = Aτ (A > 0) and f (t) is a function for which the Caputo fractional derivative
c
0D

a
t f (t) of order a (0 < a < 1) exists, then, in accordance with the definition of the Caputo

fractional derivative, we get the following relation:

c
0D

a
t f (t) = 1

�(1 − a)

∫ t

0

df (s)/ds

(t − s)a
ds

= 1

�(1 − a)

∫ Aτ

0

df (s)/ds

(Aτ − s)a
ds

= 1

�(1 − a)

∫ τ

0

df (As ′)/ds ′

(Aτ − As ′)a
ds ′

= A−a

�(1 − a)

∫ τ

0

df (As ′)/ds ′

(τ − s ′)a
ds ′

= A−a c
0D

a
τ f (Aτ). (A.1)

Similarly, if x = Bξ and B > 0, we have the following relation for the Riesz fractional
derivative ∇b

x :

∇b
x g(x) = F−1{−|k|bĝ(k)}

= 1

2π

∫ ∞

−∞
−e−ikx |k|bĝ(k) dk

= 1

2π

∫ ∞

−∞
−e−ikBξ |k|bĝ(k) dk

= 1

2π

∫ ∞

−∞
−e−i(kB)ξ |kB|bĝ(k)B−b−1 dBk.

Considering that

ĝ(k) =
∫ ∞

−∞
eikxg(x) dx

=
∫ ∞

−∞
ei(Bk)ξ g(Bξ)B dξ

= BF {g(Bξ);Bk} ,

then we obtain

∇b
x g(x) = B−b∇b

ξ g(Bξ). (A.2)
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